The SCHULZ „BRAUBLOCK“ - a multi-talent:

- Standard sizes from 5 hl (4 bbl) up to 25 hl (20 bbl)
- Pre-installation on a frame for faster field installation
- Optimal utilization of space
- Available in various layouts and combination of vessels
- Pre-piped and pre-wired + tested
- Flexible for infusion- and decoction-mashing
- Available with separate wort kettle
- Available in classic pub brewery style, type “Bräuhaus” (copper)

The SCHULZ module brewhouse - Limitless flexibility:

- From 30 hl (25 bbl) up to 200 hl (170 bbl) cast out volume
- Variety of different combinations and numbers of vessels (3-6 vessels)
- Individual brewery equipment
- Possibility for upgrade at any time
- Fully automated with Braumatik S7
- With Optimasher®
- Option of fully automated sanitation incl. all product pipes
The basis for best wort quality is the mashing process: Mashing in of dry grist without dusting or clumping via Optimasher®: The focussed grist downstream is intensively mixed with water from center and outside. The result: Finished mash flows into the mashing vessel, lowest rotation speed of the agitator treats the mash with care and avoids oxidation. The radial agitator pushes the mash from the centre along the heating areas towards the outside. Advantages: Best heat transfer, intensive mixture, no floating husks, minimal stress by shear forces. Engineered with state of art streaming simulation software. Hygenically safe flow guard plates eliminate ineffective circular motion and ensure optimal mixing. A heatable cylinder area guarantees optimal heating rates, even with reduced heating temperatures. Circular edge-raised gutter and a flat-conical arched bottom assure best hot break separation results and clear wort draining. The approved consumption of fuel oil is less than 1 liter per 100 liter of wort or less than 3,000 g CO₂ per 100 liter of wort produced. The result: Best wort quality. Even with inconsistent qualities of raw materials the desired wort parameters are archived. Vacuum evaporation with a temperature of 80°C (176°F) supersedes post heating of hot water. Because of a complete recovery of evaporation-heat the brewhouse works emission-free, without an overrun of hot water. Simmering is not the same as boiling: The wort dispersion plate enables the evaporation of undesirable aromas with lowest energy input. The reason is the large surface of the wort film during heat-holding. The result: Best wort quality. Even with inconsistent qualities of raw materials the desired wort parameters are archived. Vacuum evaporation with a temperature of 80°C (176°F) supersedes post heating of hot water. Because of a complete recovery of evaporation-heat the brewhouse works emission-free, without an overrun of hot water.

Sustainable energy supply - the hot water technology

The hot water technology with heating temperatures under 120°C (248°F) enable the use of: > Biomass (Wood chips or pellets) > Solar heat > Block heating power plant > Conventional heating technics Economic use of climate-friendly energy technologies by the usage of standard heating systems instead of industrial steam generators has many advantages: > Comparatively low acquisition costs > Lower fuel prices than fossil energy sources > No exhaust- and blow down losses > No water purification when there are acceptable degrees of hardness > CO₂ neutral energy supply > More energy-efficient brewhouse technology enables the integration of sustainable energy technologies.
Construction Options:

- Grinded hoods in industrial design
- Arched and high-gloss-polished hoods. Copper or stainless steel
- Manually operated
- Partly automated (Easy Control)
- Fully automated (Braumatik S7)
- Automatic mashing in with „Optimaliser“+ radial agitator
- Automatic hop addition

Overview of options:
Find the individual best solution for your individual needs.

<table>
<thead>
<tr>
<th>Number of vessels</th>
<th>Mash tun or mash/wort kettle</th>
<th>Lauter tun</th>
<th>Underback</th>
<th>Wort kettle or Whirlpool/Wort kettle</th>
<th>Whirlpool</th>
<th>Schoko 2.0 or Schokolino 2.0</th>
<th>Brew cycle [hours]</th>
<th>Brews per 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-vessel brewhouse</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2-vessel brewhouse</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3-vessel brewhouse</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3-vessel brewhouse</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,5</td>
<td>7</td>
</tr>
<tr>
<td>4-vessel brewhouse</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
<td>9-10</td>
</tr>
<tr>
<td>5-vessel brewhouse</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>